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The subject of pseudoisotopy or h-cobordism theory is the study of the homotopy
type of the topological group

C(M) = {φ : M × [0, 1]
∼=−→M × [0, 1] | φ|M×0∪∂M×[0,1] = id}

of pseudoisotopies of a compact smooth manifold M in the smooth topology. In my
talk, I explained the following result from [5], which provides a p-local identification
of this homotopy type in the case of a closed 2n-dimensional disc D2n in terms of
the algebraic K-theory spectrum K(Z) of the integers in a range up to roughly the
dimension for primes p that are large with respect to the degree and the dimension.

Theorem. For n > 3, there exists a zig-zag

BC(D2n) −→ · ←− Ω∞+1
0 K(Z)

whose maps are p-locally min(2n− 4, 2p− 4− n)-connected for primes p.

So far, the relation of the homotopy type of spaces of pseudoisotopies with
algebraic K-theory was studied via a combination of a stability result of Igusa [4]
and foundational work of Waldhausen [7] and Waldhausen, Jahren, and Rognes
[8]. The proof of the theorem above is independent of this approach and provides a
new method to access spaces of pseudosisotopies of even-dimensional discs, which
does not involve stabilising the dimension, yields a better range in many cases,
and is homological (see [5] for an explanation). The most recent ingredient that
goes into the proof of this result is Botvinnik and Perlmutter’s computation of the
stable homology of the moduli space of high-dimensional handlebodies [2].

Rationally and combined with a result of Randal-Williams [6] and Borel’s work
on the stable cohomology of arithmetic groups [1], our theorem results in the follow-
ing partial computation of the rational homotopy groups of the group Diff∂(D2n+1)
of diffeomorphisms of an odd-dimensional disc fixing the boundary pointwise.

Corollary. There exists an isomorphism

π∗BDiff∂(D2n+1)⊗Q ∼= K∗+1(Z)⊗Q ∼=

{
Q if ∗ ≡ 0 (mod 4)

0 otherwise
for 0 < ∗ < 2n−5.

Remark.

(1) In a range of degrees up to approximately 2n/3, these groups were previ-
ously known as a result of a computation of Farrell and Hsiang [3], who
combined Waldhausen’s approach to pseudoisotopy theory with the study
of a certain involution, neither of which the proof of the corollary requires.

(2) From work of Watanabe [9] on the value of certain characteristic classes
constructed by Kontsevich on disc bundles, one can deduce that the range
in the corollary is optimal up to at most three degrees.
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