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Concordance embeddings and diffeomorphisms. Fix a smooth d-manifold
M and a compact submanifold P ⊂ M meeting ∂M transversely. Writing I :=
[0, 1], a concordance embedding of P into M is a smooth embedding

e : P × I ↪−→M × I

that satisfies e−1(M × {i}) = P × {i} for i = 0, 1 and agrees with the inclusion
P × I ⊂M × I in a neighbourhood of P ×{0} ∪ (P ∩ ∂M)× I. The space of such
embeddings, equipped with the smooth topology, is denoted CE(P,M). In the case
P = M , every concordance embedding is in fact a concordance diffeomorphism,
that is a diffeomorphism of M × I that is the identity on a neighbourhood of
M×{0}∪∂M×I. One writes C(M) for the space of concordance diffeomorphisms.
C(M) and CE(P,M) are closely related: a concordance diffeomorphism ofM yields
by restriction to P × I ⊂ M × I a concordance embedding of P into M , and on
the level of spaces, this observation leads to a fibre sequence of the form

(1) C(M\ν(P )) −→ C(M) −→ CE(P,M)

where ν(P ) ⊂M is an open tubular neighbourhood of P .

Stabilisation. Concordance embeddings can be stabilised: there is a map

σ : CE(P,M) −→ CE(P × J,M × J)

by taking products with J := [−1, 1] and bending the result appropriately to make
it satisfy the conditions for concordance embeddings, schematically like this:

·

·

M

I I

M × J

It was Igusa [6] who, building Hatcher’s work [5], showed that this stabilisation map
is at least about d/3-connected—one of the key ingredients in studying manifolds
and their diffeomorphism groups via surgery theory and pseudoisotopy theory. He
phrased his result for concordance diffeomorphisms (i.e. the case P = M), but the
version for general concordance embeddings follows from this, using (1).

The stability theorem. One consequence of the work with T. Goodwillie and
A. Kupers that the talk was about is that, under a certain assumption on P ⊂
M , the stabilisation map is significantly more connected than the known d/3-
bound. This “certain assumption” is a requirement on the handle dimension of
the inclusion P ⊂M , which is the minimal number p so that P can be built from
a closed collar on P ∩ ∂M by attaching handles of index ≤ p.
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Theorem A (Goodwillie–Krannich–Kupers). If the handle dimension p of P ∩
∂M ⊂ P satisfies p ≤ d− 3, then the stabilisation map

σ : CE(P,M) −→ CE(P × J,M × J)

is (2d− p− 5)-connected.

Remark. The case P = ∗ was previously known from work of G. Meng [8].

An application. One use case of Theorem A is the following: via the fibre sequence
(1) for various choices of submanifolds P ⊂M , this result puts one in the position
to transfer information on the stabilisation map for concordance diffeomorphisms
of a specific manifold M (for example lower or upper connectivity bounds) to other
manifolds. For instance, together with O. Randal-Williams, I computed as part of
[7] the rationalised relative homotopy groups π∗(C(M × J),C(M)) ⊗ Q for high-
dimensional closed discs M = Dd in a range of degrees beyond that in which these
groups vanish, and Theorem A allows for an extension of this computation from
discs to any high-dimensional simply-connected spin manifold M [3, Corollary C].

The multirelative stability theorem. Theorem A is a special case of our main
theorem, which is a more general “multirelative” version. Interestingly, the proof
of the more general version involves an induction that would fail if one tried to
only prove the special case stated as Theorem A. Said differently, the more general
version is not only more general, but also necessary (at least for our proof).

In addition to the submanifold P ⊂M , the statement of the multirelative version
involves compact submanifolds Q1, . . . , Qr ⊂ M that are pairwise disjoint as well
as disjoint from P . Writing MS := M\∪i 6∈SQi for subsets S ⊂ r of r := {1, . . . , r},
there are inclusions CE(P,MS) ⊂ CE(P,MS′) whenever S ⊂ S′. This enhances
the space CE(P,M) to an r-cube—a space-valued functor on the poset of subsets
of r. This functor r ⊃ S 7→ CE(P,MS) is denoted by CE(P,M•). Note that the
value at the empty set recovers CE(P,M). Defined suitably, the stabilisation map
extends to a map of r-cubes (meaning, a natural transformation)

σ : CE(P,M•) −→ CE(P × J, (M × J)•)

whose target is the r-cube involving the submanifolds Qi × J ⊂M × J .

Our multirelative stability theorem (which specialises to Theorem A by setting
r = 0) is an estimate on the connectivity of this map of r-cubes in terms of the
handle dimensions p and qi of the inclusions ∂M ∩ P ⊂ P and ∂M ∩Qi ⊂ Qi.

Theorem B (Goodwillie–Krannich–Kupers). If the handle dimensions satisfy p ≤
d− 3 and qi ≤ d− 3 for all i, then the stabilisation map of r-cubes

σ : CE(P,M•) −→ CE(P × J, (M × J)•)

is (2d− p− 5 +
∑r

i=1(d− qi − 2))-connected.

Here are the relevant definitions: an r-cube X• is k-cartesian if the natural map
X∅ → holim∅6=S⊂rXS is k-connected in the usual sense, and a map of r-cubes
X• → Y• is k-connected if a certain (r+1)-cube is k-cartesian, namely the (r+1)-
cube that maps S ⊂ r + 1 to XS if S ⊂ r and to YS\{r+1} otherwise.
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Analyticity and calculus. Theorem B is in line with previous multirelative
connectivity results in geometric topology. Let me mention the two that are the
closest to Theorem B (incidentally both used in our proof). The statement involves
the quantity Σ :=

∑r
i=1(d−qi−2) and the space E(P,M) of ordinary embeddings

P ↪→M that agree with the inclusion in a neighbourhood of P ∩ ∂M .

(a) If p, qi ≤ d− 3, then the r-cube CE(P,M•) is (d− p− 2 + Σ)-cartesian, by [1].
(b) If p, qi ≤ d− 3, then the r-cube E(P,M•) is (1− p+ Σ)-cartesian, by [2].

These two results as well as Theorem B may be viewed as analyticity results in the
sense of Goodwillie–Weiss’ manifold calculus [4, 9] for functors on a suitable poset
category of compact submanifolds of M , namely the functors sending P ⊂ M to
E(P,M), CE(P,M), or hofib(CE(P,M)→ CE(P × I,M × I)) respectively. There
is also an intriguing connection to the approach to studying diffeomorphism groups
by means of Weiss’ orthogonal calculus [10], waiting to be explored.
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